
A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Argonne National Laboratory

Office of Science
U.S. Department of Energy

Using IDL and Python with
EPICS
Mark Rivers, University of Chicago

2

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Outline

• Quick Overview of IDL
• ezca library
• Calling ezca from IDL
• IDL CA API
• IDL EPICS class libraries
• IDL applications
• Overview of Python
• Python class libraries
• Python applications
• Using EPICS from Visual Basic

3

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Overview of IDL
• A high-level interpreted programming language with vector and array primitives - sort of a

cross between BASIC and APL
• Modern programming language

- Flow control
- Data structures
- Objects

• All operators and most functions work on scalar, vector or array data of any data type.
• Data visualization tool, advanced built-in graphics

- 2-D plots
- Contour plots
- Surface plots
- Shaded surfaces
- Gray scale/color images
- Isosurfaces
- Volume rendering

• Multi-platform support
- Unix: Sun, Hewlett Packard, Silicon Graphics, IBM
- Linux
- Microsoft Windows
- Mac Darwin

• List price: ~$3,000 on workstations, ~$1,500 on PC, Mac

4

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Overview of IDL

• Can call external C or other code
• Very fast for array operations, as fast as compiled languages
• GUI builder
• Multi-threaded
• Good vendor support
• IDL GUI applications can be run at no cost (IDL 6.0 and above)

- Must have license to use IDL command line

5

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Overview of IDL
Data Structures

• A variable in IDL has both a structure and a data type associated with it. Both
of these are dynamic, i.e. they can be changed via an assignment statement at
any time.

• Data types
- Byte (b bit, unsigned)
- Integer (16 bit, signed)
- Long (32 bit, signed)
- Float (32 bit floating point)
- Double (64 bit floating point)
- Complex (pair of 32 bit floats)
- Double complex (pair of 64 bit floats)
- String (0 to 64k characters)

• Data Structures
- Scalar
- Vector
- Array - up to 7 dimensions
- Structure - composed of other elements, like C

• The sizes of arrays are limited only by the available virtual memory.

6

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Overview of IDL
Assignment Statements

A = B + 1
• A has the same structure as B, with a data type equal to that of the

most precise operand in the expression on the right hand side. In this
case it could be any type except string.

• If B is a vector or array then 1 is added to each element.
A = 0 ; A is a 16 bit integer
A = A * 0.5 ; A is now a 32 bit float
B = A(*,3) ; B is equal to the 4th row of A
A(*,3) = 0 ; Set all elements in 4th row of A equal to 0

Syntax
• Examples:

image = fltarr(512, 512) ; zero filled array
b = image(0:127, 0:127) ; b is 128x128 array
image(*,100) = findgen(512) ; replace row 100
plot, image(*,120) ; plot row 121
; Display the power spectrum as an image
tvscl, alog(abs(fft(image, 1)))

7

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL Examples

IDL> a = sin(findgen(100)/99. * 2 * !pi)
IDL> help, a
A FLOAT = Array[100]
IDL> plot, a

8

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL Examples

IDL> a = shift(alog(abs(fft(dist(256),1))),128,128)
IDL> isurface, a

9

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ezca and EzcaScan
• EPICS extensions for “Easy Channel Access”

- Don’t need to handle chids, just use PV name strings – hash table
- Synchronous APIs - applications don’t have to handle callbacks

• Ezca (partial list)
- epicsShareFunc int epicsShareAPI ezcaGet(char *pvname, char ezcatype,
- int nelem, void *data_buff);
- epicsShareFunc int epicsShareAPI ezcaPut(char *pvname, char ezcatype,
- int nelem, void *data_buff);
- epicsShareFunc int epicsShareAPI ezcaPutOldCa(char *pvname, char ezcatype,
- int nelem, void *data_buff);
- epicsShareFunc int epicsShareAPI ezcaNewMonitorValue(char *pvname,
- char ezcatype); /* returns TRUE/FALSE */
- epicsShareFunc int epicsShareAPI ezcaSetTimeout(float sec);
- epicsShareFunc float epicsShareAPI ezcaGetTimeout(void);
- epicsShareFunc int epicsShareAPI ezcaSetRetryCount(int retry);
- epicsShareFunc int epicsShareAPI ezcaGetRetryCount(void);
- epicsShareFunc int epicsShareAPI ezcaPvToChid(char *pvname, chid **cid);
- epicsShareFunc int epicsShareAPI ezcaSetMonitor(char *pvname, char ezcatype);
- epicsShareFunc int epicsShareAPI ezcaClearMonitor(char *pvname, char ezcatype);
- epicsShareFunc int epicsShareAPI ezcaStartGroup(void);
- epicsShareFunc int epicsShareAPI ezcaEndGroup(void);
- epicsShareFunc int epicsShareAPI ezcaGetControlLimits(char *pvname,
- double *low, double *high);
- epicsShareFunc int epicsShareAPI ezcaGetGraphicLimits(char *pvname,
- double *low, double *high);
- epicsShareFunc int epicsShareAPI ezcaGetNelem(char *pvname, int *nelem);
- epicsShareFunc int epicsShareAPI ezcaGetPrecision(char *pvname,
- short *precision);
- epicsShareFunc int epicsShareAPI ezcaGetStatus(char *pvname,
- TS_STAMP *timestamp, short *status, short *severity);
- epicsShareFunc int epicsShareAPI ezcaGetUnits(char *pvname,
- char *units); /* units must be at least EZCA_UNITS_SIZE large */

10

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ezca and EzcaScan
• EzcaScan (partial list)

- epicsShareFunc int epicsShareAPI Ezca_getArray(int
noName,char **pvName,int type,int nodata,void *value);

- epicsShareFunc int epicsShareAPI Ezca_getArrayEvent(int
noName,char **pvName,int type,int nodata,void *value);

- epicsShareFunc int epicsShareAPI Ezca_putArray(int
noName,char **pvName,int type ,int nodata,void *value);

- epicsShareFunc int epicsShareAPI Ezca_putArrayEvent(int
noName,char **pvName,int type,int nodata,void *value);

11

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ezca and IDL

• IDL can call “shareable libraries”, e.g. .so files on Unix, .dll files
on Windows

• The argument passing convention is fixed, it is not compatible
with ezca.dll directly

• Need a thin glue layer between IDL and ezca/EzcaScan
• ezcaIDL is the glue layer. Mostly just changes calling

conventions. Provides a few functions that ezca and EzcaScan
do not. Use the ezcaPvToChid() function.
- ezcaIDLGetEnumStrings()
- ezcaIDLGetCountAndType()

12

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL Channel Access API
Routines which return information about process variables

Status = caGet(pvname, value, /string, maximum=max)
Status = caGetControlLimits(pvname, low, high)
Status = caGetGraphicLimits(pvname, low, high)
Status = caGetPrecision(pvname, precision)
Status = caGetStatus(pvname, timestamp, status, severity)
Status = caGetUnits(pvname, units)
Status = caGetEnumStrings(pvname, strings)
Status = caGetCountAndType(pvname, count, type)

Routines which write new values to process variables
Status = caPut(pvname, value, wait=wait)

Routines which control channel access timeouts
Timeout = caGetTimeout()
caSetTimeout, timeout
RetryCount = caGetRetryCount()
caSetRetryCount, retrycount

13

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL Channel Access API
Routines which control synchronous groups

caStartGroup
stat = caEndGroup(status)

Routines which control channel access monitors
Status = caSetMonitor(pvname)
Status = caClearMonitor(pvname)
State = caCheckMonitor(pvname)

Routines which control debugging and error messages
caDebug, state
caTrace, state
caError, err_string, /ON, /OFF, /PRINT, prefix=prefix

Documentation at
http://cars.uchicago.edu/software/idl/ezcaIDLGuide.html
http://cars.uchicago.edu/software/idl/ezcaIDLRef.html

14

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Examples
IDL> status = caget('13LAB:m1.VAL', position)
IDL> help, status, position
STATUS LONG = 0
POSITION DOUBLE = 517.19305
IDL> status = caget('13LAB:quadEM:mca1', spectrum)
IDL> plot, spectrum
IDL> help, status, spectrum
STATUS LONG = 0
SPECTRUM LONG = Array[2048]
IDL> plot, spectrum[0:500]
IDL> fft_data = alog(abs(fft(spectrum,1)))
IDL> plot, fft_data, xrange=[0,1023]

15

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Examples
Move a motor
DL> status = caput('13LAB:m8.VAL', 10000)
IDL> status = caget('13LAB:m8.RBV', pos)
IDL> print, pos

215.52734
IDL> status = caget('13LAB:m8.RBV', pos)
IDL> print, pos

835.64453
IDL> status = caget('13LAB:m8.RBV', pos)
IDL> print, pos

1795.6055

Ezca timeout values are important!
IDL> print, cagettimeout()

0.0200000
IDL> t0=systime(1)&for i=1,100 do t=caget('13LAB:m1', v)&print, systime(1)-t0

2.9898720
IDL> casettimeout, .001
IDL> t0=systime(1)&for i=1,100 do t=caget('13LAB:m1', v)&print, systime(1)-t0

0.21649790

16

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Examples
Using monitors

Monitored channels read the cached values on caget()
Can check whether a monitor has happened (a Channel Access value callback)

IDL> status = caSetMonitor('13LAB:m8.DMOV')
IDL> state = caCheckMonitor('13LAB:m8.DMOV')
IDL> help, state
STATE LONG = 1
IDL> status = caget('13LAB:m8.DMOV', done)
IDL> help, done
DONE INT = 1
IDL> state = caCheckMonitor('13LAB:m8.DMOV')
IDL> help, state
STATE LONG = 0
IDL> status = caput('13LAB:m8.VAL', 0)
IDL> state = caCheckMonitor('13LAB:m8.DMOV')
IDL> help, state
STATE LONG = 1
IDL> status = caget('13LAB:m8.DMOV', done)
IDL> help, state
STATE LONG = 1
IDL> help, done
DONE INT = 0

Monitors are useful for seeing that a PV changed state, even if its value is the
same because one “missed” the transition. For example, PV goes 0->1->0. IDL
polling might miss the one state, but checking a monitor would let one know
that it happened.

17

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Class Libraries
• IDL object classes that hide the underlying EPICS process

variables
• IDL objects treat all data as private, only accessible through

methods.
• Provide an object-oriented interface to common beamline

objects (motors, scalers, mcas, scans)
- epics_motor
- epics_scaler
- epics_mca (inherits device-independent mca class)
- epics_med (multi-element detector)
- epics_sscan

• Example of epics_motor
IDL> motor = obj_new('EPICS_MOTOR', '13LAB:m8')
IDL> motor->move, 1000. ; Move to absolute position 10.
IDL> motor->wait ; Wait for it to get there

18

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Class Libraries
• Example of epics_mca

IDL> mca = obj_new('epics_mca', '13LAB:aim_adc1')
IDL> mca->erase
IDL> mca->acquire_on
IDL> data = mca->get_data()
IDL> plot, data

• Example of epics_scaler
IDL> scaler = obj_new('epics_scaler', '13LAB:scaler1')
IDL> scaler->start, 10. ; Count for 10 seconds
IDL> scaler->wait ; Wait for it to get done
IDL> counts = scaler->read(); Read the counts on each channel
IDL> print, counts

100000000 0 0 0 0 0 0 0

19

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Class Libraries
• epics_sscan
• Designed to do the following:

- Provide an object-oriented interface to standard EPICS scans,
enabling user written software to easily access scan header
information and data.

- Provide an easy way to read MDA files written by the saveData
function in synApps.

- Provide an easy way to get scan data into the IDL iTools
system. iTools provide powerful interfaces for visualizing data,
zooming in, adding annotation, and producing publication quality
plots.

- Provide a way to convert binary scan files (e.g. MDA) into ASCII
- Does not currently communicate with the IOC for real-time data,

but this is planned for the future

20

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Class Libraries
Example: Simple 1D epics_sscan

IDL> s = read_mda('13IDC_0027.mda') ; Read the data

IDL> s->display ; Display the first detector

21

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Class Libraries
Example: 2-D epics_sscan

IDL> s=read_mda('2idd_0087.mda') ; Read the 2-D dataset
IDL> s->display, /all, /grid ; Display all of the

images in a grid

22

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Class Libraries
Example: 2-D epics_sscan

; Plot a profile of column 20 (X=20) in detector 15.
IDL> s->display, detector=15, xrange=20

23

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Class Libraries
Documentation: Reference manual for each class library
EPICS_MCA Class
This page was created by the IDL library routine mk_html_help. For more information on this routine, refer to the IDL Online Help

Navigator or type:
? mk_html_help at the IDL command line prompt.
Last modified: Sat Jul 14 10:16:05 2001.

List of Routines
• EPICS_MCA::ACQUIRE_OFF
• EPICS_MCA::ACQUIRE_ON
• EPICS_MCA::ACQUIRE_WAIT
• EPICS_MCA::ADD_ROI
• EPICS_MCA::DEL_ROI
• EPICS_MCA::ERASE
• EPICS_MCA::GET_ACQUIRE_STATUS
• EPICS_MCA::GET_CALIBRATION
• EPICS_MCA::GET_DATA
• EPICS_MCA::GET_ELAPSED
• EPICS_MCA::GET_PRESETS
• EPICS_MCA::GET_ROIS
• EPICS_MCA::GET_ROI_COUNTS
• EPICS_MCA::GET_SEQUENCE
• EPICS_MCA::INIT
• EPICS_MCA::SET_CALIBRATION
• EPICS_MCA::SET_DATA
• EPICS_MCA::SET_PRESETS
• EPICS_MCA::SET_ROIS
• EPICS_MCA::SET_SEQUENCE
• EPICS_MCA::SPECTRA_SCAN
• EPICS_MCA::WRITE_FILE
• EPICS_MCA__DEFINE
• RELEASE NOTES

Documentation at:
http://cars9.uchicago.edu/software/idl/

EPICS_MCA::GET_DATA

[Previous Routine] [Next Routine] [List of Routines]

NAME:
EPICS_MCA::GET_DATA

PURPOSE:
This function returns the data from the MCA.

CATEGORY:
EPICS device class library.

CALLING SEQUENCE:
Result = epics_mca->GET_DATA()

KEYWORD_PARAMETERS:
CHECK_NEW:

A flag which indicates that this routine should only return
the data if it has changed.

OPTIONAL OUTPUTS:
NEW_FLAG:

If CHECK_FLAG is set, then NEW_FLAG will be 1 if the function
is returning new data, 0 if the function is not returning new
data. If CHECK_FLAG is set and NEW_FLAG is 0 then the function
returns -1.

PROCEDURE:
This function reads the data from the hardware using the EPICS MCA
record, and then invokes MCA::GET_DATA

ADDITIONAL INFORMATION:
See MCA::GET_DATA().

MODIFICATION HISTORY:
Written by: Mark Rivers, October 1, 1997
Nov. 14, 1997 Mark Rivers. Changed routine to eliminate setting

rec.READ back to 0, since record support does this
automatically and it was causing record to process
again.

19-Sep-1998 MLR Added /WAIT to caput, since default is not to wait
for callback now.

17-Mar-1999 MLR Removed /WAIT from caput, to be compatible with
version 4.3 and later of the MCA record, which does
not fire forward links until acquisition is complete.

28-Mar-1999 MLR Changed routine so it no longer pokes READ field.
This assumes that someone else (typically a database)
is periodically poking the READ field. The object
initialization code now sets a monitor on the VAL
field. Added New_flag output and CHECK_NEW keyword.

(See epics_mca__define.pro)

24

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Applications

• mcaDisplay
- Full-featured program for displaying, controlling EPICS multi-channel analysers,

including peak fitting
- Uses epics_mca class library, and exports mca_display class, so it can be controlled by

other IDL applications

25

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

IDL EPICS Applications

Data catcher and data viewer (Ben-Chin Cha)

26

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Using EPICS from Visual Basic
• ezca.dll can be called directly from Visual Basic on Windows
• ezca.bas provides the interface

Public Const ezcaByte As Byte = 0
Public Const ezcaString As Byte = 1
Public Const ezcaShort As Byte = 2
Public Const ezcaLong As Byte = 3
Public Const ezcaFloat As Byte = 4
Public Const ezcaDouble As Byte = 5

Public Declare Function ezcaGet Lib "ezca.dll" _
(ByVal pvname As String, _
ByVal ezcatype As Byte, _
ByVal nelem As Long, _
ByRef data As Any) As Long

Public Declare Function ezcaPut Lib "ezca.dll" Alias "ezcaPutOldCa" _
(ByVal pvname As String, _
ByVal ezcatype As Byte, _
ByVal nelem As Long, _
ByRef data As Any) As Long

Public Declare Function ezcaPutString Lib "ezca.dll" Alias "ezcaPutOldCa" _
(ByVal pvname As String, _
ByVal ezcatype As Byte, _
ByVal nelem As Long, _
ByVal data As Any) As Long

Public Declare Function ezcaPutCallback Lib "ezca.dll" Alias "ezcaPut" _
(ByVal pvname As String, _
ByVal ezcatype As Byte, _
ByVal nelem As Long, _
ByRef data As Any) As Long

27

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Using EPICS from Visual Basic
• Example: tomography data collection. VB used because it can

easily control Roper’s WinView program for the CCD detector

	Using IDL and Python with EPICS
	Outline
	Overview of IDL
	Overview of IDL
	Overview of IDL
	Overview of IDL
	IDL Examples
	IDL Examples
	ezca and EzcaScan
	ezca and EzcaScan
	ezca and IDL
	IDL Channel Access API
	IDL Channel Access API
	IDL EPICS Examples
	IDL EPICS Examples
	IDL EPICS Examples
	IDL EPICS Class Libraries
	IDL EPICS Class Libraries
	IDL EPICS Class Libraries
	IDL EPICS Class Libraries
	IDL EPICS Class Libraries
	IDL EPICS Class Libraries
	IDL EPICS Class Libraries
	IDL EPICS Applications
	IDL EPICS Applications
	Using EPICS from Visual Basic
	Using EPICS from Visual Basic

